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Abstract

Much of modern stochastic control theory uses ideal white noise driven
models (It3 equations). If the observed data ts corrupted by noise, then the
noise is usually assumed to be 'white Gaussian’. Typically, if the underlying
models are linear, one uses a Kalman-Bucy filter to get an estimate of the
state, and then bases the control on this estimate. In practice, the noises are
rarely ‘white’, and the reference signals and the systems are only
approximations in some sense to a diffusion. Never-the-less, owing to lack of
viable alternatives, one still uses the Kalman-Bucy filter, etc. Then the
estimates are not optimal and, indecd, might be quite far from being optimal.
Similarly for the corresponding control. (Examples are given to illustrate this.)
The sense in which the estimates and/or control is useful need to be examined
in order to justify the use of the commonly used procedurc. The issue is
much deeper than mere ’robustness’ in the usual sense, since basic questions of
interpretation of the results are involved. The paper deals with these
questions. For the (filtering problem where the signal is a ’near’
Gauss-Markov process and the observation noise wide band, it is shown that
the usual method is 'nearly optimal’ with respect to a class of alternative data
processors. This alternative class is rather natural and includes the data

processors which one would normally want to use. It is unlikely that the class
.

,

can be enlarged very much in general. The asymptotic (in time and bandwidth)
problem is treated, as is the (much harder) conditional Gaussian case, and a
case where the observations are non-linear. The basic techniques are those of

weak convergence thecory. Similar results are obtained for the combined
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interval as well as the average cost per unit time problem are considered.
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Introduction

In much of modern control and filtering theory, onc uses ideal white
noisc driven modcls of the following type, where Wy(-), W,(-) and W, (.)
are standard Wicner processes, u(-) is a control, and b, o, etc, are
appropriate functions. We let 2z(-) denote a reference signal, x(-) the

control system, y(-) the (integral of the) noise corrupted observation and

rp(u) and 7Y(u) the cost function.

(1.1) dz = b,(z)dt + o, (z2)dW,
(1.2) dx = b(x,u)dt + o (x)dW,_
(1.3) dy = h(x,2)dt + AW,

T
(1.4) ro(w) = [ E k(x(s), 2(s), u(s))ds
(1.5) r(u) = lim ry(u)/T

Of course, the actual physical system, which we denote by z€(-), x€(.),
y€(.) (reference signal, control system, integral of the physical observation
noise) is not of the form (1.1) - (1.3). The reference signal 2z€(.) might be a
'near diffusion’ - only approximately representable by (1.1), and the noise in
the control and observation system would rarely be ’white’. But, typically, one
somchow decides upon a suitable model (1.1) - (1.3), attempts to determine a
good or ’'nearly optimal’ control for that model, and then applics this control

to the actual physical system. In such a context, one must naturally question
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i the value of the determined control for the ’physical’ problem, as well as the N
i_'. value of the output of the filter (even for any ’nice’ fixed control) for
I‘ making estimates of functionals of the physical process z€(.) which is '-
~ Oy
i approximated by z(-). 8
:'.j The filter output will rarcly be even nearly optimal for usc in making
'r such estimates, and the control (based on the filter outputs) will rarely be :
! *nearly optimal’. Very little attention has been devoted to such problems - vet E
'L:' they are at the core of the problem of relevence of much theorctical work. An o
: important thcory of robustness has been developed [9). [I10] - in which one
tries to construct a filter in which the output is a continuous function of the
input. The idea is that the model would be (1.1), (1.3), but with W ()
replaced by somcthing else. Such robustness is very useful. But the very f_ :
raising of such a robustness issuc implies that the noises might not be white. F

If that is thc case, what is the value of the filter (robust or not) - or of
controls based on the filter output. Unless one is willing to assume more,
there is no statistical interpertation of the output of such a filter.
Furthermore, robustness must deal with the full control/filtering problem,

corrclation between the systems, the asymptotic (average cost per unit time

problem), z(-), x(-) replaced by °near diffusions’, etc. We will deal with all ,‘
these questions hcre, when the approximating system (1.1), (1.2) is linear - for
which a fairly complete theory can be obtained.

Owing to the usual lack of ’ncar optimality’ (for the physical system) of
the filtecr and control which is obtained by using (1.1) - (1.3), one can only
ask the question: with respect to which alternative filters ("data processors’) or

controls for thc phyvsical system are thc chosen ones nearly optimal? It turns
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out, under quite broad condition, that this class of alternative filters and
controls is quite large and very reasonable. Such results are essential, if the S
use of the ideal models (1.1) - (1.3) is to make sense in a large part of the
applications.

The basic mathcmatical techniques used here are those of the theory of
weak convergence of probability measures [1), [3], [4), a group of methods
which are quite powerful for dealing with many difficult approximation S
problems in control and communication thcory (and elsewhere) [11, [5]) - [8],
[14], and [15]. The basic questions of approximation here are closely related
to those of the convergence of the sequence of physical processes
(2€(-), x€(-), v€(-)) to the ideal model (1.1) - (1.3), as the ’bandwidth’ of the
driving noises (say, 1/¢?) goes to infinity.

We begin with a discussion of the pure filtering problem. Here - for the
case where the ideal model is linear - one would simply usc the Kalman-Bucy
filter for the ideal model - but whose input is the physical observation.
Obviously, the filter docs not usually yield the conditional distribution of the
z€(t) given the data y€(s), s € t In Section 2, we discuss some counter
examples to illustrate the sort of difficulties which arisc in such
approximations, and in Section 3 the approximation theorem is given, together
with the class of alternative data processors. Secction 4 concerns the average
filter error per unit time - or thc errors for large time. We show that the
filter output can be used to obtain estimates of a wide class of functionals of .
z€(.), which are good with respect to a very broad and natural class of
alternative estimators. The examples in Section 2 illustrate why they would tl’:'-_.

not be ‘’ncarly optimal' in general. In Sections § and 6, we trecat the




-d-

conditional Gaussian case, and a case where the observation is non-linear, and
in Section 7, thc non-linear observation case for large time. The power of the
weak convergence approach should be amply evident in these scctions. The
conditional Gaussian case must be treatcd with some care, owing to the
interaction between the wide bandwidth noise and the °’conditional Gaussian’
coefficients. It is particularly important that any robustness or approximation
thecory be able to treat the large time - large bandwidth problem, and the
conditional Guassian case and, at the moment, there seems to be no alternative
to the wcak convergence point of view for this.

The combined filtering and control problem is dealt with in Section 9.
The optimal control for (1.1) - (1.3) will be nearly optimal for the physical
system - in comparison with a large class of alternative controls. Appendix |
contains some definitions concerning weak convergence. We will use the arrow
> to denote wcak convergence. We have tried to formulate the models and
results so that the paper is not burdencd with a large amount of weak
convergence theory or calculations - and so that available references can be
used where possible. There are extensions in many directions:  discrete
parameter problems, impulsive control, etc, all trcated veryv similarly to the

treatment here.
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2. °’Ncarly’ Optimal Lincar Filtcring: Formulation and Prcliminarics

In the next few sections, we consider the following filtering problem:

For each € > 0, z8(-) is a signal process, &;(-) is a ’wide-bandwidth®

observation noise, the two arc mutually indcpendent and right continuous (with

left hand limits) and the actual observation process is (v&(t), t 2 O}

(2.1 ¥4 = Hz8) + £5(1), v&(0) = 0 .

The *dependent’ case can readily be handled. It’s omitted in order to simplifyv
the notation. Define v&(1) = JB vE&(s)ds and W;(t) = J'g §§(s)ds. Let z(-)

be a Gauss- Markov process satisfying

2.2) dz = A,zdt + B dW,,

where Wz(~) is a standard Wicner process. The A, B.. H, arc constant

s
matrices, although thcy could be time-dependent in all parts, cxcept those '
where t —» =,

E We arc concerncd with the case where {j(-) is 'nearly’ white noise, .',.;jﬁi‘:

P and z& ) is 'nearly' a Gauss-Markov diffusion, and hence suppose that !

} s

\ (2.3) (Z€C) WH-D 2 (2(). W () as e =0,

B

where W) is a non-degencrate Wiencr praccss. By thce weak convergence -

and indcpendence of  z¢(.) and {5(‘), W,(-) is independent of W (). The v

weak limit of (V&) is  v(-):




(24) dy = H,zdt + dW, , y(0) = 0 .

Let y ¢ R¥ Euclidean k-space, and z ¢ R™

The actual physical system is °‘fixed” and correspond to some small
€ > 0. The use of weak convergence here is just a way of embedding the
actual data in a sequence - so that an approximation method can be used. We
work with the ’near diffusion’ 2z€(-) and ’wide bandwidth’ noise {5(-). But
to evaluate the filter that we design by using the ideal model (2.2), (2.4), but
with actual input  v€(-), the weak convergence mcthod is very useful. W.p.l
convergence ideas are inappropriate in our context and would (in any case)
restrict our flexibility. The ’distributional’ information contained in the weak
convergence is all that is needed, since the filters arc evaluated by computing
expectations of prediction errors. Similarly, the value of a control is evaluated
via an expectation of a cost function - so only distributional information is
needed.

We arc intcrested in approximating the value of expectations of
functions of z%(-), conditioned on the data vy€(.). This is not easy. Except
(and even then, rarely) for the special stationary and Gaussian cases of the
classical Wiener theory, it is nearly impossible. Furthermore, if robustness is
the issue, then we cannot restrict ourselves to Gaussian noise - since it itself
is only an approximation to the physical processes.

For (2.2), (2.4), the classical Kalman-Bucy filter equations arc

PR A
ot
e e S e
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(2.5) dz = A,zdt + Q(t) [dy - H,zdt]

Q1) = I(tH, R;!

(2.6) I=AL+TIA +B,B -IHRJHL,

where R, = covariance matrix of observation ’nois¢’ Wy(l), which (w.lo.g.,
by a simple rescaling) we set to I, unless mentioned otherwise. In practice,
with physical wideband observation noisc and the signal only a ’near
Gauss-Markov process, onc normally uses (2.6) and the ’natural’ adjustment of

(2.5), namely

(2-5¢p) 2€ = A, 2+ Q) [¥€ - H,59 .

We want to know in what way the pair (2.5yg), (2.6) makes sense.
Typically, it is not an optimal - or even nearly optimal - filter, for the
physical observation. But, as will be seen, it makes a great deal of sense and
is quite appropriate in a specific but important way. One cannot ask whether
it is ’nearly optimal’ - but, rather, with respect to what class of alternative
estimators is it ’ncarly optimal’ when estimating specific functionals of z&(-).
Weak convergence theory provides a natural tool for answering this question.
Some of our results arc related to these in {2], which concerns a non-linear
filtering problem. But, for our specific case, it is possible to go further and
get much more information fairly readily, and to treat the asymptotic (in time
as well as in bandwidth) problem, various non-linear observation functions, the
conditional Gaussian case, and the combined filtering and control problem;

hence the overlap with [2] is very small

T
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Before proceeding, it is useful to consider several simple examples which
illustrate the problems that we must contend with, particularly concerning the
difference in the ’information’ contained in the (integral of the) physical
observation process y¢(-) and in the ideal (limit) y(-), and the possible lack
of continuity in the optimal estimators as the noise bandwidth goes to Let
(XY, be bounded real-valued random wvariables which converge in
distribution (or even w.p.1) to (X,Y). Generally E(anYn) —+ E(X|Y). X,
might be a physical signal and Y, the physical observation, with the pair

(X,.Y_) close in distribution to a much simpler pair (X,Y).

Consider the example where the lack of convergence is particularly evident:

Examplc 1. X, =X,Y = X/n.

Example 2 illustrates a related pathology. If Z_ = Z (Y), where 'Y

n

i1s a random varible and (Z,,Y) ® (Z,Y) (or even converges w.p.1). Then Z

is not genecrally a function of Y.

Examplc 2. Let 'Y be uniformly distributed on [0,1]. Define Z = nY .,-*_"

for 0 €Y < I/n and, in gencral, define Z, = (nY - k) on

k/n €Y < (k+1)/n, k = 0,1,..,n-1. Y4 is a ’sawtooth’ function of Y. Also

n

(Z,.,Y) ® (Z,Y) where Z is indepcndent of Y, and both Z and Y are

uniformly distributed on [0,1]. Clearly E(Z,|Y) —#* EZ|Y) in any sensc.

Example 2 arises when we¢ have a scquence of c¢stimators, say

Z(v¢(-)), using the data y€(:). Even if the pair (Z(v¢()), y¢(-)

T e e
e, DR e A e T e T e e
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converges to a pair (Z,y(-)), the limit Z might not be a function of y(-).
Here the limit is, in fact, independent of the data y(-). Similarly, for a
control problem using noise corrupted data, say y¢(-). The limit contro!
might be independent of the limit data!

Even though Wj(-) > Wy(~), a non-degenecrate Wiener process, y€(-)
might contain a great deal more information about z€(-) than y(-) does

about z(.). For an extreme case, consider

Example 3. Let tf, i > 0, be a strictly increasing sequence of rcal numbers

€ i BUp € €y, H
for each €, such that LA and ; ‘ti 414 |e 0. Define
Af =15, . -t5, and for any t > 0, let X Af £ 0. Define a ’new’

té <t

1
observation noise §;(~) by resetting tj(t) =0 for t € [tf

e -
20 t2ipr) all i

The dintegral of the new t,;(-) still converges weakly to the Wicner process
Wy(-). But sze(-) is known nearly exactly for small €. There are even

forms of this example for which the new t%(-) is stationary.

These examples arc admittedly pathological. But we arc working with
vague concepts such as 'wide bandwidth® observation noise, 'near’ Gauss-Markov
processes, and with integrals of the observation (as one always does in modern
filtering theory). The examples do caution us to take considerable care. The
examples showed that we might lose information in going to the limit. The
following lemma (whose truth was first told to the author by T. Kurtz) shows
the sense in which we never gain information on going to the limit - (i.c.

noise bandwidth -~ =),
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Definition. For a set G, 8G = (closure of G) minus (interior of G) =

L4

f.\l N

boundary of G. For a random variable Y, let B(Y) be the minimal

o-algebra measuring Y, and let [I,(Y) dcnote the indicator function of the

£ 7.5,

set {(wY € G).

4
RS

Lemma 2.1. Let (X_,Y,) % (X)Y) (X, -real valued, Y_ with values in RE).

Then

(2.7) lim E[X, - E(X,|Y)P € E[X - E(X|Y)]* .

Remark. In Examples 1 to 3, the incquality is strict.

The proof is in Appendix 2. Therc is a similar result when Y, is

replaced by a (cadlag: right continuous with left hand limits) random process.
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3. A Class of Data Processors (Estimators)

For the ideal filtering problem with data (2.2), (2.4), the optimal decision
functions are functions of the estimates 2(-), T(-) since these completely
determine the conditional distribution. There are no alternative (admissible)
functions of the data y(-) which are better. This is not so with estimates
based on E(-), z€(-) for the system z€(-), y¢(-). We now define a large
class of functions of the observed data y€(-) with respect to which functions
of 25(-), ¥(-) are 'nearly optimal’ for small € > 0, and a large class of risk
or cost functions. In order to know how good estimates based on 2‘(-), X(-)
are for getting information on z®(-), we need to specify both a class of
(observation data dependent) alternative estimators - as well as a criterion of
comparison; i.e., a cost function. We work with only one particular cost
function - but the general idea and the natural extensions should be clear, and
the method works with ’typical’ cost functions.

Let D denote the class of measurable functions on C[0,], the space of
real valued continuous functions on [0,®) (with the topology of uniform
convergence on bounded intervals), which are continuous w.p.l relative to
Wiener measure (hence, with repect to the measure of y(-)). Let D, denote
the subclass which depends only on the function values up to time t. For
arbitrary F(-) € D or in D, we will use F(vé(-)) as an alternative
estimator of a functional of z€(.). The class is quite large, as will now be
seen.

A
First, note that D contains all continuous functions and that the z(:.)

of (2.5) can be written as a continuous function of the integral of the driving
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force y(-). [To sece the latter point, solve (2.5) - in the form of a Wiener
intcgral and do an integration by parts.] Thus, continuous functions of 2‘(-)
are admissible estimators. Many important functionals are only continuous
w.p.l (relative to Wiener or y(-) measure). For some integer n, let A be
a Borel set in R"™ with 8A having zero Lebesque measure). Then [3], the
function Lo(x(1)),.nx(t)) is in D

for any tity, € t, where x(-) denotes

t n

the canonical function in C[0,#). Let T(x(-)) denote the first time that a
closed sect A with a piecewise differential boundary is reached by x(-).
Then the function with values T N T(x(-)) is in Dy for any T < =
Thus, our alternative estimators can involve stopping times. This is essential
in scquential decision problems or whenever the cost or risk function involves
first entrance times of a function of y(-) into a decision set.

D and D, do not contain ’wild’ functicns such as those involving
differentiation. Wec consider D and D, as a class of data processors. It
seems to contain a large enough class for practical applications when the
corrupting noisc is 'white’. For the ’limit’ (white observation noisc, system
z(-)) problem, onc¢c would wusually want processors that arc continuous
functions (w.p.1) of the data y(-). Sec the comments following the thecorem
statement below.

The following is one the main ’robustness’ or ‘approximation’® results. For
a function q(z), we write (Pf,q) for the integral of q(z) with respect to
the Gaussian distribution with mean Qe(t) and covariance I(t) - the ersatz
conditional measure of  z€(-). We let the qa(-) and F(-) below be

bounded, but the thcorem holds if {(Pf,a)% q%(zé(t)), FAy€(.)) is uniformly

integrable.
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Theorem 3.1.  Assume the conditions on  z%(-), W:(-) of Section 2. Then
(2€(), 25C), WEC) ® (2(), 2(), W(-)). Let F(-) €D, be bounded. and q(-)

bounded continuous and real valued. Then (the limits all exist)

(3.1) Lim Ela(z¢(1)) - F(y¢(-)P?

> lim E[q(z(1) - (Pia)"

Rcmark. The thcorem states that (for a small €) the ersatz conditional
distribution is ’nearly optimal’ with respect to a specific_(but broad) class of
alternative estimators. The alternative class includes those that make sense to
use when the corrupting noise is white. If the noise is wide band, then it
might not make sense to exploit its detailed structure and use other ‘better’
estimators. Doing so might, in practical cases, cause processing errors and
other (unmodelled) noisc ecffccts. We chose the estimate of the conditional
mean at t in (3.1) for illustrative purposes. Many other cost or risk
functionals could be considered; e.g., intcgrals of estimation errors - or the use
of the estimates for control purposes (see below). The comment on stopping
times in the paragraph above the theorem is useful for sequential estimation -
where one stops when some function of the data first hits a decision set.

The assertion concerning the weak convergence is obvious, but necessary,
since we nced to know that the limit of the cited e-triple represents a true
filtering problem - with all three components, the svstem z(-), the filter 2(-)
and the obscrvation noisc (intcgral) Wy(~). The result would not make sensc

if only 2 out of the 3 componcnts converged.

- - - . .
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Proof. By the weak convergence of the hypotheses and the w.p.l continuity

of F(-) we also have the weak convergence

e, FoECn, (PEa)) 3

(az(), Fy(-n, (PLa),

where (P,q) = [a(z)dN(z(t), E(t);dz), and N(z,5;-) is the normal distribution
with mean 2z and covariance LI Thus, the left and right sides of (3.1)

converge to, respectively,

Ela(z(t)) - F(y(- )%

(3.2)
Ef(z(1) - Efaz(0)[y(s), s € ]]? .

Now, the proof follows from the fact that the second expression is no greater
than the first, since the conditional expectation is the optimal estimator.

Q.E.D.
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4. The Large Timc Problem (Large t. small €)

The filtering system often operates over a very long time interval. For
the model (2.2), (2.4), one would then wuse the stationary filter and any
acceptable method of analysis should be able to handlc this ‘’large time’
probiem. But with the system vy&(-), z€(-), two limits are involved since both
t ~® and ¢ - 0, and it is important that the results not depend on how
t =~ and € - 0, and that the use of the stationary limit filter is justified.
The weak convergene method is well set up to handle this problem.. For

convenience we make somc additional assumptions.

CA4.1. A, is stable. (A_H,) is observable and (A,.B,) conirollable.

By (C4.1), (2.6), has a unique, positive definite stable limit L The
| second part of (C4.2) is unrestrictive. It says simply that increments in W€(.)

behave ’close’ to a Wiener process for small € - no matter what t 1s.

C4.2. {;(t) takes the form Ef,(t) = §,(t/e2)/ ¢, where % () is a right

continuous second order stationary process with integrable covariance function
1 - © - € €

R(.). Also, if t, as ¢ 0, then Wy(t€+-) - Wy(te) > Wy(-).

Remark. The model (C4.2) is a common way of modelling wide bandwidth

noise, and is used to simplify a calculation below, and to avoid the dctails

involved with other models. Note in particular that if Sy(w) is the spcctral

density of {y(~), then Sy(ezu) is the spectral density of {5(-). The

- N DR P e I TRV B LT e e e e e L .
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PRI SN P D S L A N A T T T L T I T S T AR TR T ¥ - . X DR T IRV I A T A
= -2 - el el PRI S WS- R ARSI O I S SR ., Ty P Aa s n a.aelalatalatataYa'atata., m




-
.

"

<K,

o

!

S eV

-16~-

Sy(e2w) converges to the spectral density of white noise as € = 0, if Sy(-)
is continuous at w = 0. It will be clcar from the proof below that the
condition can be considerably weakened. We also make the rather unrestrictive
assumption that the initial time is not important and that the z€(-) processes

do not explede:

C4.3. If {ze(te)} converges weakly to a random variable z(0) as € = 0,
then z&(t, + ) > z(-) with initial condition 2(0). Also

sup E‘ze(t)l2 <
€.t

Consistency. In order that 2(-), Z(-), be a filter for z(-), y(-), it is
necessary that the initial conditions be consistent. Let N(E,Z;A) denote the
probability that the normal random variable (with mean 2, and covariance L)
takes values in the set A. By consistency, wec mean that P{z(0) € A|2(0),
L0)} = N(Q(O), L(0);A). One cannot choose the initial (random) conditions
arbitrarily. It should be obvious that if ¥(0) = £ and (z(0), z(0)) are the
stationary random variables for (stable) (2.2) and (2.5), then the initial
conditions arc consistent.

The question of consistency arises in our work since as ¢ = 0 and
t = o we do not know a-priori what the limits of (26(0, z€(1)) arc. When we
study the asymptotics as t = < and € = 0, wc will start the filter at some
large t, and the initial condition of the limit equations must be consistent
for the problem to makc sensc. Fortunately, they will be consistent - so we

will have a proper filter. This problem is considerably more difficult in the
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non-lincar case. Theorem 4.1 is the 'large time’ extension of Thcorem 3.1. The
question of consistency is either ignored in filtering - or else implicitly
assumed; e.g., one cannot allow both z(0) = 1 w.p.l and that 2(0) has a

normal distribution with a nonzero covariance.

Theorem 4.1. Assume the conditions of Section 2 and (C4.1) - (C4.3). Letr a(:)
be bounded and continuous and let F(-) € D. Define yé(s) = 0, for s €0
and define vE(-=1,-) to be the reversed'  function - with values

0 €T < = ye(-=,t:7) = ve(1-T). Then, if te > as €~ 0,
(4.1) (2 + ) 26t + ) WETe + ) - WEGL)) 3
(z(-), 2(-), Wy(-)
satisfving (2.3), (2.5), and z(-), 2(-) are stationary. Also (3.1) holds in the
form
(4.2) lim E [a(z4(1)) - F(yé(-=t; )
Wt
> lim E[q(z¢(1)) - (PEQ))? .
.t

The limit of (Pf,q) is the expectation with respect (o the stationary (z(-), L)

systent.

Proof. Supposc that (z€(1), € > 0, t < = is tight [i.c..
. N .

sup P(Iz‘(t)‘ > N} - 0. Then, by the hypothesis, ({z€(t), z6(1), € > 0, t < =}

€t

is tight and ecach subscquence of

o L.,

»
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(2€(te+ ), 26t ) WE(te+) - WELE), t < =, € > 0) has a weakly
convergent subscquence with limit satisfying (2.2), (2.5). Choose a weakly
convergent subsequence (with t, = «) also indexed by € and with limit
denoted by  z2(-), ;_(~), Wy(~). Suppose, for the moment, that z(-), 2(-) is
stationary. (Clearly, I(t) = T ast - =) If all limits are stationary, then the
subscquence is irrclevant since the stationary solution is unique. Also, since
the initial conditions of 9_(~) and z(-) are consistent undecr stationarity,
(2(-), T) s the optimal filter for y(-), z(-). Inequality (4.2) is a consequence

of this and th¢ wecak convergence (by the argument used in Thecorem 3.1.).

We next prove tightness of  {z€(1), € > 0, t < =), and then the

stationarity will be proved. Wc have
(4.3) 2¢ = [A, - QUH,12¢ + QU &(t/eD) /e + QH, 2&(1) .

Let  &t,7) denote the fundamental matrix for [A, - Q(UH, ] There are

K < = X > 0 such that |¢(t,‘r)| ¢ K exp - Mt-T). We have

t
Ee(t) = ¢(t,0)z€(l)+f ®(1,7) Q(T)E,(T/ez)dT/e
¢}

t
+J (1. T)Q(T)HzE(T)dT .
0

A straightforward calculation using (C4.2 - C4.3) and the change of variable

T/¢2 = T in the first integral yiclds

- = - - - - B ~ - - . - -

~ e - h - - - - et N - - - - D - - . . ~
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E lﬁe(t)l2 < constant {1 + Elz€(0)12) .

giving the desired tightness.

To prove the stationarity of the limit of any wecakly convergent
subscquence, we need only show stationarity of the limit values (z(0), 2(0)) of
the initial conditions (2%(t), 26(16)). For this, we¢ use a ‘shifting’ argument.

Fix T > 0 and take a wecakly convergent subsequence of (indexcd also by e,
€

and with t, = )

(2€(te+-), 25t +-), Wote+:) - Wolty), z8(te-T+-), 28(1 -T+-).

Wi(te-T+:) - Wit-T))

2(0)

with limit  (2(), 2(), W, (), zg(-), zg(-), W, (). Clearly, 24(T)
and zT(T) = z(0). We do not know what ET(O) or z0) are - but,
uniformly in T, they belong to a tight set (bounded in probability): le., owing
to thc tightness of {Ee(t), z(1), € > 0, t < «}, for each p > 0, therc is an
N, < = such that P(|z2q(0)] + |zg(0)| > N} < p for all T and limits of

convergent subscquences.  Write (where W, .(-) ‘drives’ the equation for dzy)

T
2(0) = z(T) = (exp A, Tzy(0) + [exp A(T-1)-B,dW, (1)
0

200) = 2(T) = (exp [A, - Q(=)H,]T)z (0)

T
+ [ exp [A, - QU=H, JT-T) - (dW, 1(T) + H,z(T)dT)

0

Bk
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- SEMAAN et i

Since T is arbitrary and the set of all possible {zp(0)} is tight, the

N stability of A  and (A, - Q(=)H,) implies that 2z(0) is thc stationary
:j random variable, hence z(-) is stationary. Similarly, the pair (z(-), 2(-)) is
i
> stationary.
Q.E.D.

Remark.  There is no analog of Theorem 4.1 if A is unstable (if te = =

as € - 0), since the limit of ze(te) then makes no sense. If  zS(.)

satisfied  2¢ = A2 + BES(-) for appropriate B and §5(-) (such that the

limit of ze(t€+-) i1s  z(-)), then we can show that
lim E[z(t) - 2€(t)] [z€(t) - 2€()] = T .
™ €.t
' E |
':' . <
A K
. 1
o «
Y K
~ L
N .

+ ‘-
. .
ST, P



>

-21- -
5. The Conditional Gaussian Problem. .

We now consider the ’'wide bandwidth’ observation noise analog of the

conditional Gaussian problem ([12] Let q(-), i=12, be bounded and

continuously diffcrentiable matrix valued functions with qz(x)qz(x)’z al for

} some o > 0. The signal z€(-) and noisc E)f(-) satisfy the conditions of

Section 2, but the observation is of the ’wide bandwidth and conditional

Gaussian type’, where the coefficients are data dependent:

(5.1) yé = a,(z9)2¢ + a2 N4y
)
{ .
s where :y‘(t) = Ey(t/ez)/e also satisfies (C4.2) and (the rather unrestrictive)
1 Syl
(C5.1) below. Ca

t
cs1 Elf auE(s ") g0 v < 0) - RE)) i

-0 oy

as s¢t, - =

Define R, = [7» R(u)du. Formerly we used R, = L o
In (5.1), the q(-) can depend on the covariance IL€(-) given by (5.4) Z:-;‘.-_-:
R
with no change in the results. The q-) can also be more general functions S
o

. . .. AN

of v&(-) - as will be clear from the development. For simplicity, we use e
(5.1). (The ’correction terms’ are more complicated in the general case.  Sec o
remarks below.) Such conditional Guassian systems arise, for example, when e
onc uscs the observed data to orient or focus the observing mechanism, and ~~:',\.‘
S
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34 the signal and noise strength depend on the orientation. The results of the '»1
j prcvious sections are no longer directly applicable, since there is a ’correction E_-
3 term’ due to the ’non-independence’ of ﬁs(t) and its coefficent qz(ge(t)) in :::::
W (5.1) - and similarly for related terms in the f{ilter (5.3). ’ E i
To prepare ourselves for setting up the correct filter equations, it is "‘
useful to anticipate the ‘correction terms’ and center the e-filter appropriately
so that the limit equations are the desired ones. Define the vector i‘“‘]
w0
. a,(2)
F(z, L, ¢) = VA A - R
g L q; (2)[a,(2)Rqa, ()17 a,(2)
and G = (G,,..G, ) by (recall that vy(t) € R¥ and z(t) € R™ and let
- F, . denote the derivative of F, with respect to zj)
f G(z.5) = J EIF,; (2, L LOFz L §0)dt . K
0 J o
-Z: Let GY(E,{) (resp., G‘(Q,{)) denote the first k, (resp., the last m) components E
_‘j of G(z,t). By Appendix 3, G(-) is the proper correction term for the (v€,2€) 'i'_'»jl
system, if z€  were defined by the appropriate ’conditional Gaussian’ form of
N
N (2.5wp)- E—
.". Define the centered observation and filter ‘-
: (5.2) 7€ = y€ - GYGE, 9 ‘_\
' E

'
LI

3
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N>

(5.3) € = A 2¢ - G¥(29)

z

+ I€ Q' (29) [a,(z6)Rea, T [¥€ - q,(2€)2¢]

- 1 )
(5.4) L€ = A, I¢ + IfA, + BB,

- T 0;(29) [a,(Z9)R A, 2] (7€) I€ .

(5.3) and (5.4) will bc the proper filter for 2z%(.), y€(.), in the sense that the
limit is the usual ’conditional Gaussian® filter and an analog of Thcorem 3.1

or 4.1 can be proved. Define the system

(5.5) d7 = A,z dt + BdW,
(5.6) dy = q)(2)z dt + q,(z)dW,
(5.7) dz = A, z dt +
I 6,(2)R, [a,(D)Rya, ] (dy - a,(2)z di)
(5.8) L =A,L+ZA +BB, -Iq Q3 [a,2)Rua, ) @)L .

Note that (5.7, 5.8) is the optimal filter for (5.5, 5.6), where cov\\"y(t) = tRg,
and W_(-) and Wy(-) are independent and covW,(t) = tL

Theorem 5.1 is the appropriate analog of Theorem 3.1.

Theorem 5.1.  Assume the conditions of Section 2, (C4.2) and (CS5.1). Let the

system (5.5) - (5.8) have a unique solution (in the sense of distributions) for each

initial condition. Then
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(26C), 280, WEC), § 60, Ty »

(5.9) X
(z(-), z(-), W,(-). y(-), X(4))

where z(-) and Wy(~) are mutually independent and cov Wy(t) = tR, Also

(3.1) holds.

Proof. (3.1) is a consequence of the weak convergence, and the weak

convergence is a consequence of the results in Appendix 3.

Remark. The processes in (5.2) and (5.3) were centered so that the weak
limits (5.7), (5.8) would be the correct filter for the limit system (5.5), (5.6). If
we had not centecred, then the limit of (the uncentered) y¢(-) equation would
contain an additional drift term which would not be compensated for by the
correction term in the limit of the uncenterced Qe(-) scquence; thus, the limit
process (2(4), I(-)) would not nccessarily be a filter for the (z(.), y(-))
process.

Note that the correction (centering) terms involve first derivatives of
q,(-) and q,(-), (although, via the centering, thc limit does not involve the
derivatives). This can lecad to some unfortunate and generally ignored
difficulties. Suppose that we can choose the q,(-) and that we choose them
to optimize some cost criterion. We¢ can't do the optimization with the
(v€,2€,5€) system because that would be computationally impossible - but we
can (in principle) with the limit system. But, unlcss the resulting ‘control’
(g,(-), i=1,2) is continuously differentiable, 1t cannot be wused, since the

correction terms involve derivatives. In fact, it is not clecar whether or not
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there is a weak convergence result for non-differentiable  qg(-). Similar
problems arise wherever the cocfficient of a 'wide bandwidth’ noisc process
depends on a ‘control’. If the q,(-) depended on the y€(-) or ¥¢(-) ina
different (but ’smooth’) way - other than via (26,25), there will usually be a
(cven more complicated) correction term. But its form can be worked out by

the mecthods of wecak convergence theory.
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6. Nonlincar Obscrvations

The ideas of the previous sections (and Scction 8) are wuseful for
problems which have a partly non-linear structure, but where the ’limit’ system
is linear. We now develop this for one special but important case. Many
filtering or communcation systems use limiters on the input for purposes of
increasing robustness or for ’linear dynamic range’ reasons, when the power of
the input can vary over a large range. The input is put through a ‘hard’
limiter - then followed by a linear filter, whose purpose 1s to reconstruct the
input. Such systems have been of great interest in communication theory. Sece
[13), one of the first attempts to systematically analyze such a system.We treat

one case - where the obscrvation is scalar valued and is

(6.1) y€ = k(H,2¢ + t&1)/e, k(x) = sign(x), y&(0) = O.

The 1/e¢ is a normalizing term and can be put anywherce in the filter system
- as long as the system is lincar. The normalization might or might not be
used in practicc. The qualitative results will remain the same - but the
average power in the wunnormalized observation goes to zero as the bandwidth
of E;(-) goes to = A similar development (with the same results) can be
carried out with the use of a ‘’soft” limiter; ie., k(x) = sign(x) for
|x| > ¢ > 0, k(x) = x/c for |x| < ¢, and also if k(-) is vector valued.

We use
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Cé6.1. Eﬁ(t) = i.y(t/ez)/e, where E.y(-) is a component of a stationary
Gauss-Markov process whose correlation function goes to zero as t = © (hence -

0 exponentially).

Write E({y(t))2 = 0 . Then the average of 6.1) over the noise &f s

[;:2—]% H, z€(1) + 5,
0

where 6, - 0 as € - 0, uniformly for z€(t) in any bounded set. In

preparation for the approximation result, define the systems

(6.3) dz = Az dt + BdW,
2 Y% %
(6.4) dy = [nog] Hyz dt + 212 dw,
(6.5) dz = Az dt + Q(U[dy - [Ef;f]% Hz dt]
0
(6.6) i=AzZ+ZA;+BB-£HHZ[~L] )
4]y

(6.7) Q(t) = L(VH, [—L]% -1

® o’ 4l

T

(6.8) Iop = g J sin p(t) dt,

where p(.) 1is the correlation function of (y(«). Definc 2‘(~) by

A N L7 SN
(6.9) 2¢ = A, z¢ + Q¥ - [52;] H z¢) .
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Equations (6.5) to (6.8) represent the Kalman-Bucy filter for the system
(6.3), (6.4). Equations (6.6), (6.9) rcpresent the filter which onc would normally
use for the system (z%(-), y®(-)), and whose usc we must justify. The

justification is by Thecorem 6.1.

Theorem 6.1, Assume the conditions of Section 2 and (C6.1). Then

(6.10) Z6C), 2€0-), vE0) 2 (20), 2(-), y(o)) .

and Wy(-) is independent of z(.). Also, (3.1) holds.

Remark. The power of the weak convergence methods is well illustrated by
the relative case of getting this result. The problem is very hard - due to the
nautre of the nonlincarity, and alternative approaches to even a small part of

the analysis (e.g., as in the classical work [13]) arc very involved.

Proof. The proof of the weak convergence follows from that in [14], or (13,
Chapter 9.3], and (3.1) follows from the weak convergence, exactly as in the
proof of Theorem 3.1. Actually, the proofs in [14], [1] usc a signal s(-)
which does not depend on €, but the proofs would be essentially unchanged

if the actual e-dependent signal z€(-) were used instead.
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7. The Large Timc Problem: Nonlincar Obscrvations

We now do the analog of the ’ergodic’ case of Theorem 4.1 for the
nonlinear observation problem of Section 6 for the case where the system of

Section 6 is in opecration for a long time.

Theorem 7.1. Assume the conditions of Theorem (6.1) and (C4.1) to (C4.3). Then
the conclusions of Theorem 4.1 hold, where z(-), f’:(~) and X(-) are the

stationary systems for (6.3) to (6.7).

Remark on thc proof. By the method of proof of Theorem 4.1, and the
result of Theorem 6.1, in order to carry the proof of Thcorem 4.1 to the
present case, wc¢ nccd only show tightness of {'z\e(t), € > 0,1 < =), Due to
the non-lincarity of the observation, it is no longer possible to do it directly,
as in Theorem 4.1, and a ’perturbed Liapunov function® method will be
employed [1, Chapter 6]. Those mcthods are useful for getting stability-type
results for 'wideband noise¢’ driven or ’near’ Markov processes, results that are
generally hard to get. Such results are essential for the asymptotic (large t)
analysis. The dcvelopment will be essentially self contained, but thc interested
reader will find a fuller discussion and other applications in [l]. Related

perturbed Liapunov function methods are used in [15].

Proof Part 1. We show only the above mentioned tightness. For use below,

we first cvaluate the expression
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(7.1) K&t = & jt [EEk(H, 2(5) + £5(s) - ESk(H,76(s) + &£ (s)]as,

where  Ef denote the cxpectation conditioned on {{j(u), z€(u), u € t}, and

Ef denotes the expectation conditioned on {z8u), u ¢ t} and under the
assumption that {f(s) is the stationary random variable. Let cy(t) =
Hozy(t) for some matrix H, where Zy(~) is the Gauss-Markov process cited

in (C6.1). Notec that there are X > 0 and ¢, < ® such that

0

(7.2) |variancc [stationary Ey(t)] - variance [§y(t)|€y(0) = 0]| € Cuexp - A,

|E[2,(0]3,00] | € (ceexp - 2)|5,0)] -

Changing scale s/€2 = s in (7.1) and multiplying the arguments of Kk(-)

by € yields

(7.3) KE&(1) = ¢ J':/o 2 [Ef k(eH_z€(e%s) + §,(8)) - Ef k(eH, z€(e%s) + E,y(s))]ds.
€

For large initial conditions (at timc t/e?) Ey(t/ez), (7.1) might be large. For
|Ey(t/€2)| 21 and s - t/€* 2 O(log I—E_y(t/e2)|), the conditional mean of

t,(s) (given Ey(t/ez)) will be 0(1). Thus, we can writc

KE@] = 0[5,/ | + 1] + [KEOT /edy) <1y,
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We now decal with initial values Ey(t/ez) = 0(1). Let N{a,b) denote a
normally distributed random variable with mcan a and variance b. In

evaluating thc cxpression

Ef k(eH,2€(e%) + §.(5) - Ef k(eH,25(e%) + £(s) ,e%s > ¢,

we can replace the conditional expectations by expectations over iy(s) only,
where the first §.(s) can be taken to be N(8,, 0% (1-8,)) and the second
can be taken to be N(O,og), where B, - 0 exponentially as (s - t/el) - =
For notational simplicity, sct 03 = 1.

For small 8 > 0 and z > 0 (with a similar development for z < 0),
|P{IN(B,, 1-8,)| € €z} - P(|N(O,1)| < ez}]

€ |P{|N(0.1-8,) | ¢ ez} - P{]N(O,l)l ¢ ez}| + 0(s,)

< P{IN(O, )| € ez(1428,)} - P{|N(0,1)]| € ez}| + 0(5))

¢ 2P(ez ¢ N(0,1) ¢ ez(1+26,)) + 0(6,) = 0(ez6,) + 0O(5,) .

Putting thesc estimates into (7.3) and using the cited fact that & -0

exponentially, for some X > 0 we have

(7.4) [KEW | € o) [[5t/eD] + 1]

+ 0(e?) 'I't Ef|26(e%)| exp - M(s-t/eh) - ds
/2

= Ki(

I8
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: (1.5) ez - o2 .

! E K, (0] = 0(¢?) .

, l'._,

r\' r'n J
. . o

. Part 2. Write (6.9) as C.,
" Y
\J a

. . A E.
- (7.6) 2¢ = [A, - QH, L—oz;]%]z‘ + Q) KE(t) /e, o
R 0 W

; where we use

. K€1) = k(H,zé(t) + gy(D).

For our stability argument, Q(®) «can be used in lieu of Q(t) in (7.6)

(justified by a ’perturbation argument, which we omit). Decfine

A = [A, - Q(w)H,[j&—o]”l :

and let P > 0 bc such that AP + PAI‘ = -C < 0. We start with the
Liapunov function Q'PE = V(;), and then ‘perturb’ it. See Appendix 4 for
the definition of the operator A€ below. (It is essentially a 'differentiation’

operator.) By Appendix 4, we have

(7.7) A€ V(zE(1) = V(z4(D)
= 2¢'0) € 251 + 2200 PQ(=)kE(1) /€.
The second term on the right of (7.7) is not dominated by the first, and

we 'perturb’ the Liapunov function in order to ‘control’ the bad term. Define

the perturbation
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Vi = 2€0P [ QI[Ef KEo) - Ef kE)]ds
€

By Part 1, |vf(¢), = 0(1)]2€(t)|1<§(t) and by Schwarz's inequality and (7.4),

(1.8) E|VED)| = 0(e) EX)28() 2

=0(e) 1+ E|z¢m)|7] .

Also, we can readily show that
(7.9) AVE®D = - 225() PQ(=) [kE(D) - ESkE(n)]
€

are! ® ey TEEL €rcy . FELE
+ 22 E(t)P J't Q(=) [Efké(s) - Efk(s)]ds .

Recall that the I_-kae(s) is the expcctation over the stationary §(s) only:

i.e, the conditioning data is just z€(.). It can be shown that
o Tepe _ Bire yvi2e¥, €2
E|z (t)l|Ek(t)| = O(1)E |z (t)|E EAUT
€

By substituting (6.9, for z and using our bound on the intcgral, thc last

term on the right of (7.9) is bounded by

o) [|z€m] + 1]KE® + 0(1) K§ (/e .

Define  the perturbed Liapunov function VED) = Vz¢n) + VEQ.

Putting thc estimates togcther, cvaluating ;\e\’e(t) via (7.7) and (7.9) and
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cancelling the common 1/¢ terms (with opposite signs) in (7.7) and (7.9) and

using (See (A4.1) in Appendix 4)

t A
EVE(t) = EVE(0) + J; EAEVE(s)ds
and the bound on ElVf(t)l yields

EV(z¢(t)) ¢ constant + o(e)[1 + E|£€(t)|2]
(7.10) + It(constant) ds - J'tEQGI(s)CQE(S)ds
0 0
¢ N
+ (constant) J.o E(Jze(s)) + DK (s)/e ds
+ (constant) ftE%lge(s)le%lze(s)l")ds )
0

Using the incquality lab| < a?/c + cb® for any ¢ > 0 and (7.5) in the

last two integrals of (7.10) yields, for some constants ¢; > 0 and ¢ > 0

]

(7.11) E[240[% € o,(1+1) - ¢, J’; E|2€(s) %ds

C t A
2. € 2
+ EJz%(s)|%ds + ¢ ¢, t .
= EI) s
By letting Cy/C < ¢y (7.11) implies that
(7.12) sup Elie(t)ﬁ <>
€,

Finally, (7.12) is cquivalent to the required tightness of (z€(1), € > 0, t < @),

Q.E.D.
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8. The Filtcring and Control Problem: Finitc Timc Casc.

The ideas and results of thc foregoing sections can bc extended to the
combined filtering and control problem. The issues remain essentially the
same. As secn in the previous sections, the use of the (suitably adjusted
when necessary) Kalman-Bucy filter for the wide bandwidth obscrvation noisc
and ’near Gauss-Markov® signal might be very far from optimal, but it is
‘nearly optimal’ with respect to a large and reasonable class of alternative data
processors. For the combined filtering and control case, the issue is more
complicated. The control system will be driven by wide bandwidth noisec as
well, and ncither the system nor the reference signals would be Markov.
Supposc that (as is usually the case) onc obtains a control (optimal or not)
based on the usual ideal white noise driven limit model. This control will be
a function of the outputs of the filters, and onc must question the value of
applying this to the actual widc bandwidth noise system.

Considcr the following lincar control and filtering problem: Let 2%(-)
denote the physical reference signal and let z€(.) ® z(-) as € ~ 0 where,

as in the previous scctions, z(-) satisfies

(8.1) dz = A,z dt + BdW, .

Let the control system be (for constant matrices A, D,, B, H ) decfined by

(8.2) x€ = A x® + D,u + B&S,

with observations v€(-), where

B

S T T SR -
WV LI T TR WU TR
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where the threc processes J'g E€(s)ds = WE(1), IB EE(s)ds = WE() and  z2f(-)
are mutually independent, and WE&(-) 2 W(-), Wf((-) ® W,(-), standard Wiener
processes. Thus §§(-) and §%(-) are wide bandwidth noise processes.
Correlations among thesc processes can also be handled, at the expense of a

more complex notation.

Define the filters and limit system:

x€ | A xE Du : H x¢
(8.4) L= N + Q1) [y€ - . ]
z€ ) Azze 0 sze ’
( Hxx X
(8.5) dy = dt + dwW = H + dw
L sz z
i) [ Ak D_u H A
(8.6) d| . = . |dt + Q(t) [dy - . dt],
z | Az 0 sz
(8.7) dx = A xdt + D udt + B dW_,

with the obvious associated Ricatti equation for the conditional covariance
I(-) of (x(-). z(-)). Herc Q1) = Z(t)H'[cov W(1)]"Y. Equation (8.4) will be
the filter for (x€(-), z€(-)) with data y®(.), and (8.6) is the filter for (8.5),

(8.7). The cost functions for the control problem arc
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(8.8) R¢(u) = j’OTE r(x€(1), 2¢(1), u(t)dt,

T
(8.9) R) = [E r(x(t), 2(t), u(n)dt,

for bounded and continuous r(-,-,-), and some T < =

The controls take values in a compact set U, and we let (see related
definition of D and D, in Section 3) ¥ denote the set of U-valued
measurable (w,¢t) functions on C¥&0,) x [0,) which are continuous w.p.l.
relative to Wiener measure. Let ¥, denote the subclass which depends only
on the function values up to time t. We view functions in ¥ as the data
dependent controls with value u(y(-),t) at time t and data y(.). Let ¥
denote the subclass of functions u(-,-) € ¥ such that wu(-,t) € ¥, for all t
and with the use of control u(y¢(-),-) (resp., u(y(:),-)), (8.2) and (8.4) (resp.,
(8.6), (8.7)) has a unique solution in the sense of distibutions. These
u(yé(-),-) and u(y(-),-) are the admissible controls.

Commonly, onc tries to use the model (8.5), to (8.7) to get a (nearly)
optimal control for cost (8.9). This control would, in practice, actually be
applied to the ’physical’ system (8.2), (8.4), with actual cost function (8.9). Such
controls would normally not be ’nearly’ optimal in any strict sense for the
physical systems and questions arise which are similar to those posed for the
pure filtering problem: in particular, with respect to what class of comparison
controls is such a control 'nearly optimal’. Again, weak convergence thcory can

provide some answers, although the problem is considerably more difficult, and

the results less satisfactory.
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Straightforward weak convergence arguments (using only the assumed

e

X weak convergence of the driving WES(-), WE(-) processes’, and the uniquencss h':
; of the limit can be used to prove Thecorem 8.1. Let M denote the class of :-E
\ .
) U-valued continuous functions u(-,-,-) such that with usec of control with B
value u(;((t), Q(t),t) at time t, (8.6), (8.7), has a uniquc (weak sense) solution. ﬂ‘
- Let M, decnote the subclass of controls (stationary controls) which do not "
depend on t (for use in thc next section). Let wu(ye,-), u®(x€.z¢,-) and “;"‘*’
U 8X%.2,-) denote the controls with values u(y€(.).t) u®(x€(1),2€(1),t) and <

B(x(1),2(1).1) at time t.

" Thecorem 8.1. Assume the conditions above in this section. For & > 0, let there
exist a control GS(~,-) in M which is %-optimal for (8.6), (8.7), (8.9), with

respect to controls in ¥ Then, for any u(-,-) € ¥»

llm —_ A A
(8.10) — REu(y%,-)) 2 lim RE@S(XE, z€, ) - 8
€

s '1‘ _' ""' '

= R(U%(x, z, ) - 8. ;o

O

T

] o
L]

-~ Remark. It would be preferable if we could allow the comparison control -
u(yé(-),-) to depend on € other than only via thc values of ve(.); ie., for o
- it to be a (say) 8-optimal admissible control for the ’physical’ e-system. This is ‘—"i
- possible, if we can a-priori guarantee some smoothness (uniformly in ¢) of the :_’ l;
= obtained controls - so that a wcak convergence argument can be carried out - :;:-'
% o
v yiclding an admissiblic limit control for thc filtcring/control problem. But, in !:
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-

gencral, the limit of {u®(y®(-),-)} would not neccessarily be dependent only on
the limit data v - cven if y€(-) ® y{.). This is clecar from the cxamples in

Section 2. Similar difficultics occur in all work concerning thc existence of

YT T

optimal controls undcr ’partial information’.

Extensions. The thcorem can be carried over to the case where the
obscrvations (of both x€ and z®) are of the non-linear form (6.1), and to
the conditional Gaussian casc.

L Thcorem 8.1 can be readily extended to the non-linear case where
‘ x€ = b(x%u) + o(x.tf) and (x%(-)} converges weakly to an appropriate

diffusion for ’nice’ controls, and where x€(t) can be observed without

additive noise. If the noise term o(x,{f() were of the control dependent form

a(x,u,{)f), then there might not be a weak convergence result - unless u(:)
were ’smooth’. In thc ’smooth’ case, there might be a correction term which
depended on certain derivatives of the control' See Section 5 for additional

comment on this point.
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9. Filtering and Control: The Large Timc Casc.

We now treat the filtering and control analog of the largec time and

bandwidth problem of Section 4, and will use the assumptions

C9.1. = A s stable, [A;Hx,Hy] is observable and A,
controllable.
C9.2.  tf() satisfies (C4.2).

The cost functions are

- T
.1 Y@ = lim # [ E rz(0xmum)at

: 1 (7 €
(9.2) W) = lim $ J'OE r(z(t),x € (t),u(t))dt
We adapt the point of view of [18, Section 6] and assume that the
system can be Markovianized. This is incorporated in the following

assumption.

C9.3. For each € >0, there is a random process $€(-)  such that
(e, t < ®} is tight and for each u(-) € My, (M, defined above Theorem 8.1)
X¢) = (xe(~),z€('),)A(e(-),26(~),w€(~),§€(-),§§(')) s a right continuous

homogeneous Markov-Feller process (with left hand limits).

----------
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Remark. If 28(.) satisfies € = Az® + §f, then the assumption (C9.3)

holds if the driving noises (§5(-).85(-),85(+)) satisfy (C9.3) and (C9.1), (C9.2)
hold; ie. if the noises §S(-) and §€(-) can be written as functions of a
suitable Markov process. Let wu(x¢,2€) and wu(x,z) (and similarly for u®)

denote controls with values u(x€(1),z€(t)) and u(x(1),z(t)) at time t.

Theorem 9.1. Assume the conditions of Theorem 8.1 and (C9.1) - (C9.3). Let
E€(-) and §S() satisfy (C4.2) and let 2%(-) satisfy (C4.3). For ® > 0,
let there be a ®-optimal* control W%(-,-) € My for the system (8.1), (8.6), (8.7),
and cost (9.2), and for which (8.1), (8.6), (8.7) has a unique invariant measure.

Then, for u(-,-) € M

]

l. A A — A ~
(93) e Y GEE) > limy (@G -

= y(@8x,2)- & .

Proof. Fix wu(-,-) € M;, Definc the ’averaged transition measure’
€ 1 (7 € €
PS() = 4 EJ‘O P(XE() € - |X(0))dt,

where the expectation E is over the possibly random initial conditions, and

X€(.) is the process corresponding to the use of u(ﬁe(-), 2€(~)). By the

*By &-optimal, one means that it 1is ®&-optimal with respect to all
non-anticipative (with respect to the observed data) measurable u-valucd
controls, for each initial condition.
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.......................
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hypothesis, {P§(-),T > 0) is tight. Also (writing X = (x,2,x,2))
(9.4) 75GEED) = lim [r(xzu(k2)) PEAX).

Let 'l'f1 - © be a sequence such that it attains the limit li‘;n, and for which

P%e(-) converges weakly to a measure, which we denote by P¢(-). Using
n

the ’'Feller’ property and the right continuity, it is not hard to show that

P€(.) is an invariant measure for X€(.). Also, by construction of PE&(.),
YE(x¢,29) = [Y(xzux2)PdX) .

Let (xg(-),zg(-),;(g(-),23(-)) denote the first four components of the
stationary Markov-Feller X€(-)-process associated with the invariant measure
P¢(.). By our hypotheses (seec the argument in Section 4) {x§(~),z§(-),§§(-),
28(-)} converges weakly to a limit (xo(')’zo(‘)’;‘o(')’20(')) satisfying (8.7),
(8.1), (8.6). Also, the limit must be stationary, since the (xg(-),...,2§(~)) is for

each €. Let p"-) denote the invariant measure associated with this stationary

{imit. Then

Y429~ yu2) = [r(xzu(x2)) k*(dxdzdxdz) .
By a similar argument, it can be shown that

—_R A A =5 A A
fr(x,z,us(x,Z)) p*  (dxdzdxdz)

1]

¥(u%(x,2)

= lim 7E(uB(x€,2¢)) .
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-8 .
(The uniqueness of the invariant measure g% (-) is used here). Inequality

{9.3) now follows from the &-optimality of 'u's(-). Q.E.D.

Extensions. As for the case of Theorem 8.1, we do not know how to work
with arbitrary admissible u€(-) as comparison controls. But Theorem 9.1 can
be extended in many ways. Perhaps the simplest is the following. For
arbitrary q and t; 3 0, let u(t) depend on (y(t-t) - y(1), i € q) or (for
the e-system) on (y®(t-t) - y®(t), i € q) as appropriate, as well as on
X(1),2(t), or on  x€(t),2€(t), and enlarge the class M, to include such
dependencies. Then the theorem remains true. More generally, we can allow
u(-) to depend on other functionals of the data, provided that those
functionals, together with X¢€(.) can be ’appropriately Markovianized’ - so
that the scheme of the proof can be wused, and the uniqueness and

non-anticipitative properties continue to hold.
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Appendix 1, Weak Convergence Dcfinitions. E
N
b
n’,_u
Let P (-) be the measure associated with X , a Euclidean r-space (RT) ity
3.
valued random variable. We say that (X} or (P} is tight (equivalently, B
{X,} is bounded in probability) if sup Pn{IXn| 2 N)~»0 as N -« [If
n
{X,} is tight, then by the Helley-Bray Theorem, there is a subsequence ‘(n;}
and a mecasurc P(-) and associated random variable X such that X - X i
i | 2
in distribution. Equivalently, Ef(X_ ) - Ef(X) for each bounded and .
1 R
continuous function. In fact, f(-) can be any bounded measurable function o
.
for which P{x: f(-) discontinuous at x} = 0 ([3], Theorem 5.1). As seen in "
the text, this is a uscful generalization. -
Let C[0,») denote the space of continuous functions on [0,) with ) "
values in E' (we always omit the r-dependence in the notation), with the >
topology of uniform convergence on cach bounded interval. The metric on f,‘:f'..
C[0,=) can be taken to be :‘::
dx(-)y(-) = [ et max [1, sup |x(s) - y(s)|Jdt : S
8 N
Let D[0,») denote the space of (Rf-valued) functions on [0,©) which
are right continuous and have left hand limits, and with the Skorohod
topology. Sec [3], [4] for a discussion of this topology. The topology can be
metrized so that the spce is complete and separable. If Xx(-) is continuous,
then x_(-) = x(-) in this topology if and only if the convergence is uniform on :::-::
[ 4
each bounded interval. This is all that we need to know here. If dg(-,-) is :-;:f-
P
the metric on D[0,T], then (as above), the metric on D[0,*) can be taken to
N
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be [g etd(x(-).y(-))dt. The spaces C[0,*) and D[0,®) are the two most
useful (currently) spaces for the study of the convergence of a sequence of
random processer. Even if the paths are continuous, it is often more
convenient to work with DJ[0,®).

Let P (-) be a measure on D[0,) associated with a random process
x, (-} (which we call X|) whose paths are in D[0,®) w.p.l We say that
P.(-) converges weakly (written ) to a measure P(.) associated with a
process X = x(-) with paths in DJ0,=) if Ef(X)) - Ef(X) for each
bounded continuous function f{-) on D[0,%). We might also write X, > X
If there is weak convergence, then {(-) can be any measurable function
which is continuous only almost everywhere with respect to the limit measure
P(-) (3, Theorem 5.1). The sequence {X,} or (P} is said to be tight if
for each 5 > 0, there is a compact set Kg € D[0,») such that
P (X, € Kg) 2 1-8 for all n. If (X} is tight, then there is a subsequence
n, and a P(-) on D[0,°) (with associated process X = x(.)) such that

i
Xni# X. Analogous definitions and facts hold for processes with paths in
C[0,=).

There are many useful criteria for tightness and for identifying the
limits. For purposes of analysis, it is often wuseful to aiter the probability
space so that there is a stronger type of convergence. The choice of the
probability space does not affect the weak convergence result - since the
disributions of the X never changes.

Skorohod imbedding (somctimes called Skorohod representation) [1], [19].

Let P> P on D[0,®) (or on C[0,®). There is a probability space (5,?3,5)

with processes X X defined on it so that P(X, € A) = P(X_, € A},

e e et e T e e T T T e e e e e o] Tt L S -
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P(X € A} = P(X € A} for any Borel set A € D[0,®) (or in C[0,®). if we are
working in this space) and d(in,;() - 0 w.pl. Thus, if we wish, we can
alter the probability space so that we get w.p.l. convergence in the metric of
D[0,®) (or C[0,*)), without altering the distributions of each process X  or

X. This device often facilitates the analysis.
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Appendix 2. Proof of Lemma 2.1.
Proof. Choose a finite partition G = (G,,G,..) of R€& such that

(A2.1) P(Y € 8G) = 0, all i; P(Y € G;} > 0, i > 0,

P(Y € Gy = 0.

(For notational simplicity we omit G, below.) Let ¥ (resp. F)) denote the

o-algebra on @ induced by {I(Y), i > 0)) (resp., {Ig(Y,)), i > 0)). Given
1 1

5 > 0, we can choose the partition such that

(A2.2) E[E(X|Y) - 1~:(x]3f)]2 €6 .

By Jensen’s inequality,

(A23) ‘ E(EX(X,|F )1 € E[EXX, Y .

By (A2.3) and thc arbitrariness of &, to prove the lemma, we need only show
that

lim E[X, - E(X,[F )]

n

= lim [EX? - EEXX,[F )]
n

< E[X - E(X|F)P? = EX? - E[E¥X|F)L

or, equivalently, (since EX? - EX?) th-t
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lim 9 2
(A2.4) —— E E (Xn|3’n) 2 EE (XIF) .
n

(A2.4) follows from Bayes’ rule, the weak convergence and Fatous’ lemma

since
lim 2
—n— E E (an}’n) =

lim E sznlv (G
T1 P(Y,€G)
EZXI4(G)

>y —— _E E’(X|F).
1 P(YEG)

{We used the fact (see Appendix 1) that if P{YGGGi}=0, then
X"IYn(Gi) > XIy(G).

Q.E.D.
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Appendix 3. A Mcthod for Getting Wecak Convergence.

In this section, we outline a method for showing that a sequence of
solutions to a wide bandwidth nois¢ driven ODE converg-s wecakly to a
diffusion, and identify the diffusion. The method is taken from [l, Chapter
5], and is a slight simplification of the method in {8}

Let x%(-) be defined by
(A3.1) %€ = K(x) + F(x)r(1/e?)/e,

where  E(-) is a sccond order stationary right continuous process with left
hand limits and intcgrable correlation function ﬁ(-), and the functions K¢(.)
and F(-) are continuous, (A3.1) has a wunique solution and F(-) is

continuously diffecrentiable. Define fio = J‘?m Ei(u)i'(O)du, assume that

t ' _
(A3.2) Eff du [EGE $)[eD.T90) - Rus)]| =0

as ts = =
The condition is not very restrictive. We use it here only because it allows
the use of a convenient reference.

Decfinc the diffusion operator £ and function G = (E}l,...) by

(A3.3) 2M(x) = £,(x) K(x) + _(: EI[f, (x)F()E(D] F(x)E(0)dt

= ;fxi(x) E}i(x) + ZLtracc {fxixj(x)} . (F(x)ﬁop'(x)),

P
.

r "l ‘.) ‘l "

o

.
’

h ]
id s

.
PR

i P o Sn S T ]
A

-

il oa' o’ 4’ 2" a2

Ty
AN
‘~‘\‘
..0..
".--\
A
- 7.
‘e ..'-
"‘I

i';;

. ilala




- D}
. -
- .
- o
-

-
L 4
I

~50- Y.
v .
-' \'.-
" - - “:P
e where (Gy,---) = G are the cocfficients of the first derivatives (f_ ,---) in ¥

1 r.
. (A33). T
. >
The operator £ is the differential generator of the lto process -"-:

-

_ _ Y% -
(A3.4) dx = G(x)dt + F(x)R; dw,

where w(-) is a standard Wicner process. Suppose that (A3.5) has a unique
solution in the sense of distributions. Then, by [!, Chapter 5.84], if

x€(0) 2 x(0), then x%(-) ® x(-), with initial condition x(0).
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Appcndix 4. A Wcak Infinitesimal Opcrator A€,

Refer to the notation of Section 6. Let f(-), g(-) be real valued
(progressively) measurable functions of z€(.), §§(~) and let E§ denote the
expectation conditioned on ze(s),if,(s),s ¢ t. Define the operator A€ by:

f(-) € domain of A€ and ASf =g if for each T,

E€ f(t+4) - f(t)
t l < ®

lim su E| 2

A0 € t&T

sue Elg(t)] < =

ElEf f(t+8) - £(t)

a
2 - g(t)| - 0, each t.

w

Then [1), [8], [16], [17], for s 2 0, t 2 0,

(Ad.1) EE ((t+s) - f(t) = j:“ EE Af f(u)du.

A

The A€ operator plays the role of an infinitesimal operator for non-Markov
processes. The relationship (Ad4.1) has many applications (see the rcferences) in

weak convergence thceory.
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